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1 Introduction

One way of calculating the entropy of a black hole in higher derivative gravity is through

the Wald formula [1]. Recently, it has been proposed by A. Sen that the Wald formula for

a specific class of extremal black holes in higher derivative gravity can be written in terms

of the entropy function [2]. The entropy function for the extremal black holes that their

near horizon is AdS2 × SD−2 is defined by integrating the Lagrangian density over SD−2

for a general AdS2 × SD−2 background characterized by the sizes of AdS2 and SD−2, and

taking the Legendre transform of the resulting function with respect to the parameters

labeling the electric fields. The result is a function of moduli scalar fields as well as the

sizes of AdS2 and SD−2. The values of the moduli fields and the sizes at near horizon are

determined by extremizing the entropy function with respect to these fields. The entropy

is then given by the value of the entropy function at its extremum1. Using this method

the near horizon solution and the entropy of some extremal black holes in the presence of

higher derivative terms have been found in [2, 4, 5].

The horizon in the extremal black hole that its near horizon solution has symmetry

of AdS2 × SD−2 is an attractor, i.e., the physical distance between an arbitrary point and

the horizon is infinite [6]. In this case, the values of scalar fields at the near horizon are

independent of the values of these fields at infinity. Hence, one expects the near horizon

values of these fields to be given by some algebraic equations, i.e., the equations that one

1In above discussion, it has been assumed that in the presence of higher derivative terms the near horizon

geometry has the symmetry of AdS2×S
D−2. In the cases that the higher derivative corrections change this

symmetry, the near horizon solution can not be found by extremizing the entropy function and the Wald

formula can not be written in terms of the entropy function. In those cases one should solve the differential

equations of motion to find the near horizon solution and then use the free energy method [3] or the Wald

formula [1] to calculate the entropy.
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finds by extremizing the entropy function [2]. We will show in this paper that in some non-

extremal (near extremal) cases, even though the throat is not infinite, the near horizon

values of the scalar fields are independent of the values of these fields at infinity, i.e., they

are given by some algebraic equations.

It has been shown in [7] that the entropy function has a saddle point at the near horizon

of extremal black holes. This may indicates that the entropy function formalism should

not be specific to the extremal black holes. In fact, it has been shown in [7–9] that the

entropy function formalism works for non-extremal black hole/branes at the supergravity

level. However, the higher derivative terms in many cases change the symmetry of the

tree level solutions, so one can not find the near horizon solution in these cases using the

entropy function formalism, as in the extremal cases.

In this paper we would like to show that the higher derivative correction to the near

horizon solution of the non-extremal (near extremal) D1D5P can be calculated using

the entropy function formalism and the Wald formula can be written in terms of the

entropy function. We do this by explicitly solving the differential equations of motion

and comparing the result with the near horizon solution that one finds using the entropy

function formalism. Moreover, we will show that the entropy that one finds from the free

energy method is the same as the entropy that one finds by equating the Wald formula

with the entropy function, as in the extremal cases.

An outline of the paper is as follows. In section 2, we review the construction of near

horizon solution of non-extremal D1D5P . In sections 3, we add the higher derivative R4

terms to the supergravity. We find the higher derivative correction to the near horizon

solution by explicitly solving the differential equations of motion in section 3.1. In section

3.2, we find the same near horizon solution using the entropy function formalism. In section

4, we study the entropy of D1D5P system. In section 4.1, we calculate the entropy using

the free energy method, and in section 4.2, we calculate the entropy by equating the Wald

formula with the entropy function at its extremum. The results in both cases are the same.

2 Review of non-extremal D1D5P solution

In this section we review the non-extremal D1D5P solution of the effective action of type

II string theory. The two-derivatives effective action in the string frame is given by

S =
1

16πG10

∫

d10x
√
−g
{

e−2φ

(

R+ 4(∂φ)2 − 1

12
H2

(3)

)

− 1

2

∑ 1

n!
F 2

(n) + · · ·
}

, (2.1)

where φ is the dilaton, H(3) is NS-NS 3-form field strength, and F(n) is the electric R-R

n-form field strength where n = 1, 3, 5 for IIB and n = 2, 4 for type IIA theory. In above

equation, dots represent Fermionic terms in which we are not interested. The effective

action includes a Chern-Simons term which is zero for the D1D5P solution. Moreover, for

this solution F(n) = dC(n−1). The 5-form field strength tensor is self-dual, hence, it is not

described by the above simple action. It is sufficient to adopt the above action for deriving

the equations of motion, and impose the self-duality by hand.

The non-extremal D1D5P solution of the IIB effective action when D1-branes are

along the compact (z) direction (S1), D5-branes are along the compact (z, x1, x2, x3, x4)
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directions (S1 × T 4), the KK momentum P = N/R is along the (z) direction, and the

non-compact directions are (r, θ, φ, ψ), is given by the following, (see e.g. [10]):

ds210 = (f1f5)
− 1

2

(

− dt2 + dz2 +K(coshαmdt − sinhαmdz)
2

)

+f
1

2

1 f
− 1

2

5

4∑

i=1

dx2
i + (f1f5)

1

2

(
dr2

1 −K
+ r2dΩ2

3

)

,

e−2φ = f−1
1 f5 ,

Ctz = cothα1

(
1

f1
− 1

)

+ tanhα1 , Ctzx1···x4
= cothα5

(
1

f5
− 1

)

+ tanhα5 ,

where we have set the string coupling at infinity to be gs = 1. In above,

K(r) =
r2H
r2

, f1(r) = 1 +
r2H sinh2 α1

r2
, f5(r) = 1 +

r2H sinh2 α5

r2
. (2.2)

The three conserved charges are

Q1 =
V r2H sinh(2α1)

2
, Q5 =

r2H sinh(2α5)

2
, N =

R2V r2H sinh(2αm)

2
. (2.3)

The near horizon solution can be found by taking the following limit:

r2 ≪ r2H sinh2 α1,5 , (2.4)

In this limit α1 and α5 are very large so sinhα1,5 ≈ coshα1,5. In terms of the new coordinate

ρ2 ≡ r2 + r2H sinh2 αm , (2.5)

the near horizon solution is

ds2 = −
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

λ2ρ2
dt2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 (2.6)

+
ρ2

λ2

(

dz − ρ+ρ−
ρ2

dt

)2

+ λ2dΩ2
3 +

r1
r5

4∑

i=1

dx2
i ,

e−2φ =

(
r5
r1

)2

, Ftρz =
2ρ

r21
, Ftρzx1···x4

=
2ρ

r25
. (2.7)

where

r21,5 ≡ r2H sinh2 α1,5 , ρ+ ≡ rH coshαm , ρ− ≡ rH sinhαm , λ2 ≡ r1r5 . (2.8)

The above metric is a direct product of S3×T 4 and the BTZ black hole [11] upon rescaling

the coordinates. The horizon ρ = ρ+ in above solution is not attractor. The physical

distance between an arbitrary point and horizon is

∫ ρ

ρ+

λρdρ
√

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
=
λ

2
ln




ρ2 − 1

2(ρ2
+ + ρ2

−) +
√

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

1
2(ρ2

+ − ρ2
−)



 ,
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which is finite. For the extremal case which corresponds to ρ+ = ρ−, the distance is infinite.

For the near extremal case in which we are interested, however, the distance can be made

as large as we want by sending ρ+ → ρ−. So one expects the asymptotic region to be

decoupled from the near horizon region.

The higher derivative corrections to the supergravity action (2.1) may modifies the

near horizon solution (2.6). In general, they have field redefinition freedom [12, 13], so one

may choose different scheme for the higher derivative terms. It has been argued in [14]

that the scheme in which the corrections are written in terms of the 6-dimensional Weyl

tensor, the near horizon solution (2.6) is not modified so it may be the reason behind the

equality of the supergravity entropy and the entropy from counting the degrees of freedom

for the non-extremal case [15]. In the scheme that R4 corrections are written in terms

of 10-dimensional Weyl tensor, however, the solution (2.6) is modified which may indicate

that the corrections associated with the Ramond-Ramond field have nontrivial contribution

to this solution in 10-dimensions. We will find the R4 correction in the next section.

3 R
4 correction

In this section we are going to consider the string correction α′3R4 to the supergravity

action. The correction in the scheme that gravity is written in terms of the 10-dimensional

Weyl tensors is [16]

S =
1

16πG10

∫

d10x
√
−g
{

Ltree + e−2φ (γW )

}

, (3.1)

where Ltree is given in (2.1), γ = 1
8ζ(3)(α

′)3 and W in terms of the Weyl tensor is

W = ChmnkCpmnqCh
rspCq

rsk +
1

2
ChkmnCpqmnCh

rspCq
rsk . (3.2)

Using the above correction to the supergravity, one can find its effect on the non-extremal

solution (2.6). This can be done by solving the differential equations of motion that we are

going to do in the next section or by using the entropy function formalism that we will do

in section 3.2.

3.1 Correction via solving differential E.O.M.

We are going to work in Euclidean space in this section. In order to find a solution in the

presence of higher derivative terms, one should make an ansatz for the solution and then

find the unknown functions in the ansatz by solving the differential equations of motion.

We consider the following ansatz for the solution:

ds2 = a(ρ)

(
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

λ2ρ2
dτ2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 +

+
ρ2

λ2

(

dz − i
ρ+ρ−
ρ2

dτ

)2)

+ b(ρ)

(

λ2dΩ2
3 +

(
r1
r5

) 4∑

i=1

dx2
i

)

, (3.3)

e−2φ = u(ρ) , Fτρz =
2iρ

r21

a3/2(ρ)

b7/2(ρ)
, Fτρzx1···x4

=
2iρ

r25
a3/2(ρ)b1/2(ρ) ,

– 4 –
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where a(ρ), b(ρ) and u(ρ) are the scalar fields. We have assumed the RR charges are

not modified by the higher derivative correction. With the above ansatz, the Euclidean

action becomes

I = − 1

16πG10

∫

d9x

∫

dρ
[

ℓ(a, a
′

, a
′′

, . . . , u, u
′

, u
′′

) + γω(a, a
′

, a
′′

, . . . , u, u
′

, u
′′

)
]

, (3.4)

where ℓ and ω are

ℓ =
√
g

[

u(ρ)R − 1

2

F 2
(3)

3!
− 1

2

F 2
(7)

7!

]

, ω =
√
gu(ρ)W , (3.5)

and

√
g =

ρa3/2(ρ)b7/2(ρ)r31
r5

,
F 2

(3)

3!
=

4r5
r31b

7(ρ)
,

F 2
(7)

7!
=

4r5
r31b

7(ρ)
. (3.6)

The Euler-Lagrange equation for the scalar field a(ρ) which follows from the above action

is given by

∂ℓ

∂a
− d

dρ

∂ℓ

∂a′
+

d2

dρ2

∂2ℓ

∂a′′
= −γ

(
∂ω

∂a
− d

dρ

∂ω

∂a′
+

d2

dρ2

∂2ω

∂a′′

)

, (3.7)

and similarly for b(ρ) and u(ρ). These differential equations are valid only to first order of

γ, so one has to solve them perturbatively. At the zeroth order of γ, the solution is (3.3),

i.e., a = b = 1, u = (r5/r1)
2. At the first order of γ, the solution must be in the following

form:

a(ρ) = 1 + γap(ρ) , b(ρ) = 1 + γbp(ρ) , u(ρ) =

(
r5
r1

)2

(1 + γup(ρ)) . (3.8)

Inserting them in the differential equations of motion, one finds the following equations for

the scalars ap, bp, up, respectively:

(

ρ(ρ2 − ρ2
+)(ρ2 − ρ2

−)

)(
1

7
ap

′′ + bp
′′ +

2

7
up

′′

)

+

(

3ρ4 − ρ2ρ2
+ − ρ2ρ2

− − ρ2
+ρ

2
−

)

(
1

7
ap

′ + bp
′ +

2

7
up

′

)

−
(

3

7
ρ3(ap + 7bp + 2up)

)

= − 9

28
ρ3Q

−3/2
1 Q

−3/2
5 ,

(

ρ(ρ2 − ρ2
+)(ρ2 − ρ2

−)

)(

ap
′′ + 3bp

′′ + up
′′

)

+

(

3ρ4 − ρ2ρ2
+ − ρ2ρ2

− − ρ2
+ρ

2
−

)

(

ap
′ + 3bp

′ + up
′

)

−
(

3ρ3(ap −
61

21
bp −

2

7
up)

)

=
27

28
ρ3Q

−3/2
1 Q

−3/2
5 ,

(

ρ(ρ2 − ρ2
+)(ρ2 − ρ2

−)

)(
2

7
ap

′′ + bp
′′

)

+

(

3ρ4 − ρ2ρ2
+ − ρ2ρ2

− − ρ2
+ρ

2
−

)

(
2

7
ap

′ + bp
′

)

+

(
6

7
ρ3(−ap + bp)

)

=
9

14
ρ3Q

−3/2
1 Q

−3/2
5 . (3.9)

The above differential equations should give correction to the near horizon geometry (3.3).

Similar equations have been found in [14] for the correction to the non-extremal D3-branes

– 5 –
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and in [17] for the non-extremal M2-branes. In those cases, using the boundary condition

at the horizon, one finds that the solution is a power law solution. However, the above

equations have only constant solutions with the following values:

a(ρ) = 1 − γ
51

32r31r
3
5

,

b(ρ) = 1 − γ
27

32r31r
3
5

,

u(ρ) =

(
r5
r1

)2(

1 + γ
33

8r31r
3
5

)

. (3.10)

This indicates that the near horizon geometry in the presence of the higher derivative terms

is a direct product of S3×T 4 and the BTZ black hole, as in the tree level. In [9], it has been

shown that the tree level solution (3.3) is consistent with the entropy function formalism.

The above result indicates that this consistency should be valid even in the presence of the

higher derivative terms. Hence, the correction to the non-extremal solution (3.3) should

be also found by using the entropy function formalism that we are going to do in the next

section. We note however that there are many cases that the entropy function formalism

works only at the tree level, e.g., non-extremal D3, M2, M5 solutions [7].

3.2 Correction via entropy function formalism

We are going to work in Minkowski space in this section. In order to find solution in

the entropy function formalism, one should consider a general background with the same

symmetry as the symmetry of the tree level solution, i.e.,

ds2 = v1

(

− (ρ2 − ρ2
+)(ρ2 − ρ2

−)

λ2ρ2
dt2 +

λ2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 (3.11)

+
ρ2

λ2

(

dz − ρ+ρ−
ρ2

dt

)2)

+ v2

(

λ2dΩ2
3 +

(
r1
r5

) 4∑

i=1

dx2
i

)

,

e−2φ = us , Ftρz =
2ρ

r21

v
3/2
1

v
7/2
2

= e1 , Ftρzx1···x4
=

2ρ

r25
v
3/2
1 v

1/2
2 = e2 ,

where the scalars v1, v2, us are constant. The algebraic equations from which these con-

stant parameters can be found are given by extremizing the entropy function. The en-

tropy function, on the other hand, is defined by taking the Legendre transform of function

f(v1, v2, us, e1, e2, ρ) =
∫

H dxH
√−gL with respect to the electric fields e1, e2, and dividing

the result by ρ. That is

F (v1, v2, us) =
1

ρ

(

e1
∂f

∂e1
+ e2

∂f

∂e2
− f

)

. (3.12)

Using the Lagrangian in (3.1), one finds the following entropy function:

F (v1, v2, us) =
V1V3V4

16πG10

(

6us
r21
r25
v
1/2
1 v

5/2
2 (v2 − v1) +

2v
3/2
1

v
7/2
2

+ 2v
3/2
1 v

1/2
2

−γus
r31
r5
v
3/2
1 v

7/2
2

105v4
2 − 60v3

1v2 + 54v2
1v

2
2 − 60v1v

3
2 + 105v4

1

32r41r
4
5v

4
1v

4
2

)

. (3.13)

– 6 –
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Considering the following perturbative solution:

v1 = 1 + γx , v2 = 1 + γy , us =

(
r5
r1

)2

(1 + γz) , (3.14)

one finds the following equations

∂F

∂us
= 0 → 6(x− y) =

9

2(r1r5)3
,

∂F

∂v1
= 0 → 28y + 4x+ 8z =

3

(r1r5)3
,

∂F

∂v2
= 0 → − 244y + 84x− 24z = − 27

(r1r5)3
. (3.15)

The solution to these consistent equations is

v1 = 1 − γ
51

32(r1r5)3
, v2 = 1 − γ

27

32(r1r5)3
, us =

(
r5
r1

)2(

1 + γ
33

8(r1r5)3

)

, (3.16)

which is exactly the same as the solution in (3.10). Therefore, even though this system is

non-extremal, the entropy function formalism and the differential equations of motion yield

the same result for the near horizon background in the presence of the higher derivative

terms. We now turn to the calculation of the entropy of this system.

4 Entropy of nonextremal D1D5P system

In the presence of higher derivative terms, the entropy can be calculated either from the

free energy or from the Wald formula. For the systems that the entropy function formalism

can be used to find the near horizon solution, e.g., the non-extremal D1D5P solution, the

Wald formula can be written in terms of the entropy function which is an efficient way to

calculate the entropy in the presence of higher derivative terms. In the next section we

calculate the entropy using the free energy method [3], and in the section 4.2 we calculate

the entropy from the Wald formula.

4.1 Entropy from free energy

Following [3], one can identify the free energy of the theory with the Euclidean gravitational

action, I, times the temperature, T , i.e.

I = βF , (4.1)

where β = 1
T . The calculation of the Euclidean action is divergent at large distances,

ρmax, and requires a subtraction. The integral must be regulated by subtracting off its

zero entropy limit, i.e.

F = lim
ρmax→∞

I − I0
β

, (4.2)

where I0 is the zero entropy limit in which the periodicity of the Euclidean time is defined

by β0. One must adjust β0 so that the geometry at ρ = ρmax is the same in the two

– 7 –
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cases, i.e. the black hole and its zero entropy limit. This can be done by equating the

circumference of the Euclidean time in two cases. Having F , the entropy in terms of the

free energy is then given by S = −∂F
∂T .

Let us start from the black hole action which will be noted by IBH

IBH = − 1

16πG10

∫

d10x
√
g L , (4.3)

where L is given in (3.1). Inserting the solution (3.3) in which a(ρ), b(ρ), u(ρ) are given

in (3.10), one finds

IBH =
1

4πG10

∫ β

0
dτ

∫

dz

︸ ︷︷ ︸

V1

∫

dΩ3

︸ ︷︷ ︸

V3

∫

dx1 . . . dx4

︸ ︷︷ ︸

V4

∫ ρmax

ρ+

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

ρdρ

=
1

8πG10
V1V3V4β

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

(ρ2
max − ρ2

+) , (4.4)

where ρmax is a cutoff at large distances. The above expression is divergent at large

distances and must be regulated by subtracting off its zero entropy limit, IAdS. It is

given by

IAdS = =
1

4πG10

∫ β0

0
dτ

∫

dz

∫

dΩ3

∫

dx1 . . . dx4

∫ ρmax

0

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

ρdρ ,

=
1

8πG10
V1V3V4β0

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

(ρ2
max) . (4.5)

The relation between β0 and β is

β0 = β

√

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

ρ4

∣
∣
∣
∣
ρ=ρmax

∼= β

(

1 −
(ρ2

+ + ρ2
−)

2ρ2
max

)

, (4.6)

which comes from the fact that the geometry of the hypersurface ρ = ρmax must be the

same for both cases [3].

Taking the limit ρmax → ∞ of the subtraction of IBH and IAdS, one finds the free

energy in terms of rH to be

F = lim
ρmax→∞

(
IBH − IAdS

β

)

= − 1

16πG10
V1V3V4

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

r2H . (4.7)

To write it in terms of temperature, one calculates the surface gravity by KK reduction to

9-dimension (see e.g., [18]) which has diagonal metric, i.e.,

κ = 2πT =
√
Gρρ

d

dρ

√

Gττ

∣
∣
∣
∣
Horizon

, (4.8)

where

Gττ = gττ − g2
τz

gzz
, Gρρ = gρρ . (4.9)

– 8 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
6

One finds the temperature to be

T =
(ρ2

+ − ρ2
−)

2πλ2ρ+
=

1

2πrH cosh(α1) cosh(α5) cosh(αm)
,

Using the fact that the number of D1 and D5 branes, N1, N5, and the boost parameter αm

are independent of temperature, one finds the following linear relation between temperature

and rH :

T =

√
V

2πℓ4s
√
N1N5 coshαm

rH , (4.10)

where we have used

N1 =
V r2H
2l6s

sinh(2α1) , N5 =
r2H
2l2s

sinh(2α5) , (4.11)

and the fact that in the near horizon region sinh(α1,5) ≈ cosh(α1,5). The entropy S = −∂F
∂T

becomes

S =
1

8πG10
V1V3V4

(

1 − γ
9

8r31r
3
5

+O(γ2)

)
2πℓ4s

√
N1N5rH coshαm√

V
. (4.12)

It is convenient to write the entropy in terms of the left and right KK momenta, NL and

NR which are defined as

NL,R =
V R2

zr
2
H

4l8s
exp(±2αm) , (4.13)

Using above relations, one finds the entropy to be

S = 2π
√

N1N5(
√

NL +
√

NR)

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

. (4.14)

where we have also used the relevant formulas for the volume of the circle, 3-sphere and

the volume of 4-torus as well as the the 10-dimensional Newton constant, i.e.,

V1 = 2πRz , V3 = 2π2 , V4 = (2π)4V , G10 = 8π6ℓs
8 , (4.15)

The first term in (4.14) is the supergravity result (see e.g., [18]) and the second term is

the higher derivative correction. In the next section we calculate the entropy using the

entropy function formalism.

4.2 Entropy from entropy function

Entropy in a higher derivative theory can also be calculated from the Wald formula [1]

SBH = 4π

∫

H
dxH

√
−gH

∂L

∂Rµνλρ
g⊥µλg

⊥
νρ , (4.16)

where L is the Lagrangian density and g⊥µν denotes the metric projection onto subspace

orthogonal to the horizon. It has been shown in [2] that for extremal black holes that the
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near horizon geometry can be calculated using the entropy function formalism, the Wald

formula is proportional to the entropy function. We have seen that the correction to the

non-extremal solution (3.3) can also be calculated using the entropy function formalism.

Hence, one expects that the Wald formula in this case also is proportional to the entropy

function. The constant of the proportionality can be fixed by comparing it with the entropy

at the supergravity level. That is

SBH =
πℓ4s

√
N1N5ρ+√
V

F , (4.17)

where F is the entropy function. One can easily check that the above entropy is the same

as the tree level entropy (4.14) after inserting the tree level entropy function (3.13) into

it. The above formula can also be found directly from the Wald formula [5, 8, 9].

Now, inserting the solution (3.16) into the entropy function (3.13), one finds the entropy

function at its extremum to be

F =
1

8πG10
V1V3V4

(

1 − γ
9

8r31r
3
5

+O(γ2)

)

(4.18)

After inserting this into (4.17) and using (4.13) and (4.15), one finds exactly the entropy

in (4.14). This confirms that the Wald formula (4.16) for the non-extremal D1D5P solution

in the presence of higher derivative terms is proportional to the entropy function. For

extremal case, i.e., NR = 0, the entropy has been found in [5], however, the correction is

different from the one in (4.14). This is related to the fact that the scheme for the higher

derivative terms in [5] is different from the scheme that we have chosen in (3.2). When

there is no KK momentum, i.e., NR = NL, the entropy (4.14) is the same as the entropy

that has been found in [8].

We have done the same calculation for the non-extremal D2D6NS5P solution and

found that the correction to the tree level solution can be calculated either by solving the

differential equations of motion or by using the entropy function formalism. In this case

also the Wald formula is proportional to the entropy function and it is equal to the entropy

that one finds using the free energy method.

The reason that the entropy function formalism works for the non-extremal (near

extremal) D1D5P and D2D6NS5P cases may be related to the fact that the near horizon

geometry of these solutions have a throat. Even though the physical length of the throat is

finite for non-extremal cases, the throat can be made as long as we want for near extremal

cases. Hence, the scalar fields at the horizon are independent of the values of these fields

at infinity. The tree level solutions of non-extremal (near extremal) D3, M2 and M5

at the near horizon also have throat geometries, however, the modified solutions in the

presence of the higher derivative correction have no longer the throat. That is why the

entropy function formalism works for these systems only at tree level. For non-extremal

D1D5P and D2D6NS5P cases, however, the higher derivative corrections keep the tree

level throat. Hence, the entropy function formalism works even in the presence of the

higher derivative terms.

In fact the entropy function formalism for extremal cases [2] works in above sense. That

is, the original Wald formula for black hole entropy holds for non-extremal black holes, and

– 10 –
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in applying this result to extremal case one must define the entropy of an extremal black

hole to be the limit of the entropy of the associated non-extremal black hole in which

the non-extremal parameter goes to zero. For example, the entropy of extremal D1D5P

is given by the entropy of non-extremal D1D5P (4.14) in which NR → 0. Hence, one

may expect the entropy function formalism works for any near extremal solution which

has throat at the near horizon region, and entropy to leading order of the non-extremal

parameter can be found using the entropy function formalism.
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[11] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES];
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